EXPERT INSIGHT

Learn

React with
TypeScript

A beginner's guide to building real-world, production-ready
web apps with React 19 and TypeScript

4 ; -_,I'}‘;‘:..i.'-" : rf‘;}j. ; iR
g ; ,-f 113 f‘f’? T
53?{{!? AN

PR
RN

N

Third Edition

Carl Rippon <packt

<PACKD

Learn React with TypeScript

Third Edition

Copyright © 2025 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored
in a retrieval system, or transmitted in any form or by any means,
without the prior written permission of the publisher, except in the

case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure
the accuracy of the information presented. However, the
information contained in this book is sold without warranty, either
express or implied. Neither the author, nor Packt Publishing or its
dealers and distributors, will be held liable for any damages caused

or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information

about all of the companies and products mentioned in this book by

the appropriate use of capitals. However, Packt Publishing cannot

guarantee the accuracy of this information.
Portfolio Director: Ashwin Nair
Relationship Lead: Bhavya Rao

Project Manager: Aparna Nair

Content Engineer: Adrija Mitra
Technical Editor: Sweety Pagaria

Copy Editor: Safis Editing

Indexer: Pratik Shirodkar

Production Designer: Shantanu Zagade
Growth Lead: Priyadarshini Sharma
First published: November 2018
Second edition: March 2023

Third edition: June 2025

Production reference: 1050625
Published by Packt Publishing Ltd.
Grosvenor House

11 St Paul’s Square

Birmingham

B3 1RB, UK.
ISBN 978-1-83664-317-3

www.packt.com

Contributors

About the author

Carl Rippon is a seasoned software developer with over 25 years of
experience in building complex business applications across a
range of industries. For the past 15 years, he has specialized in
modern JavaScript technologies — particularly React, TypeScript,
and Next.js. A passionate educator and writer, Carl has authored
more than 100 blog posts, sharing practical insights and solutions

with the developer community.

http://www.packt.com/

Id like to thank Sarah, Ellie-Jayne, Lily-Rose, Fudge, and Arlo
for all the support and encouragement they've given me while
writing this book. A special thanks to everyone on the Packt

editorial team for their hard work and great feedback, especially
Adrija Mitra.

About the reviewers

Guyjit Singh is a Berlin-based senior frontend engineer at
Storyblok, with over six years of experience in building modern web
applications using React, TypeScript, and Node.js. Formerly
employed at zendesk.com, he contributed at an organizational level
across Al-powered and customer-facing initiatives. Gurjit is also an
active open source contributor. His work has led to collaborations
with engineers at Apple, Wix, and more, and he was invited to a
hackathon in San Francisco, US, for his contributions to the Khalis
Foundation. He enjoys speaking at conferences and sharing
practical engineering insights with the developer community. In his
free time, he’s passionate about Indian classical music, reading

psychology books, and traveling the globe.

Andrew Baisden is an experienced software developer skilled in the
JavaScript and Python ecosystems. He builds cross-platform

applications using frontend technologies such as React, TypeScript,

and modern frameworks. Experienced with backend and mobile
development, Andrew is also passionate about sharing knowledge
and writes technical articles for various publications. He also
engages with his social media audience by offering valuable
resources and content. Andrew combines education with constant

self-improvement to stay current with technology.

The author acknowledges the use of cutting-edge Al in this case
ChatGPT, with the sole aim of enhancing the language and
clarity within the book, thereby ensuring a smooth reading

experience for readers. It's important to note that the content
itself has been crafted by the author and edited by a professional
publishing team.

Learn more on Discord

To join the Discord community for this book — where you can share
feedback, ask questions to the author, and learn about new releases

— follow the QR code below:

https://packt.link/GxSkC

https://packt.link/GxSkC

Table of Contents

Preface

Part 1: Introduction

Getting Started with React

Technical requirements

Understanding the benefits of React

Creating a React project

Understanding the project

Adding linting to Visual Studio Code

Adding code formatting

Starting the app in development mode

Producing a production build

Understanding the structure of a React app

Understanding the React entry point

Understanding the React component tree

Understanding a React component

Creating a component

Creating a basic Alert component

Adding Alert to the App component

Using props

Understanding props

Adding props to the Alert component

Using state

Understanding state

Implementing a visible state in the Alert

component

Adding a close button to Alert

Using events

Understanding events

Implementing a close button click handler in
the alert

Implementing an alert close event

Using React developer tools

Using the Components tool

Using the Profiler tool

Summary

Questions

Answers

Getting Started with TypeScript

Technical requirements

Understanding the benefits of TypeScript

Understanding TypeScript

Catching type errors early

Improving developer experience and
productivity with IntelliSense

Understanding JavaScript types

Using basic TypeScript types

Using type annotations

Using type inference

Using the Date type

Using the any type

Using the unknown type

Using arrays

Creating TypeScript types

Using object types

Creating type aliases

Creating union types

Using the TypeScript compiler

Creating a React and TypeScript component

Creating a project

Adding a props type

Adding a state type

Summary

Questions

Answers

Using React Hooks

Technical requirements

Using the effect Hook

Understanding the effect Hook parameters

The rules of Hooks

Effect cleanup

Creating the project

Fetching data using the effect Hook

Using state Hooks

Using useState

Understanding useReducer

Using useReducer

Using the ref Hook

Understanding the ref Hook

Using the ref Hook

Using the memo Hook

Understanding the memo Hook

Using the memo Hook

Using the callback Hook

Understanding the callback Hook

Understanding when a component is re-

rendered

Using the callback Hook

Other React Hooks

useTransition

useDeferredValue

Hooks covered in other chapters

Summary

Questions

Answers

Part 2: App Fundamentals

Approaches to Styling React Frontends

Technical requirements

Using plain CSS

Creating the project

Understanding how to reference CSS

Using plain CSS in the alert component

Experiencing CSS clashes

Using CSS modules

Understanding CSS modules

Using CSS modules in the alert component

Using Tailwind CSS

Understanding Tailwind CSS

Installing and configuring Tailwind CSS

Using Tailwind CSS

Using SVGs

Understanding how to use SVGs in React

Adding SVGs to the alert component

Other styling approaches

Using inline styles

Using SCSS

Using CSS-in-JS

Summary

Questions

Answers

Using React Server and Client Components

Technical requirements

Understanding SPAs

Understanding the SPA problem

Understanding the benefits of SPAs

Understanding Server Components

Understanding what a Server Component is

Understanding how RSCs address the SPA
problem

Understanding the benefits of Server
Components

Creating Server Components

Creating the project

Creating an RSC

Understanding how Server Components work

Exploring Client Components

Understanding Client Components

Understanding Client Component rendering

Specifying Client Components

Creating Client Components

Composing Server and Client Components

RSCs versus Client Components

Understanding when to use an RSC or Client

Component

Understanding client boundaries

Rendering an RSC in ColorModeToggle

Summary

Further reading

Questions

Answers

Creating a Multi-Page App with Next.js

Technical requirements

Creating routes

Creating the project

Understanding routes

Creating a posts route

Creating navigation

Using the Link component

Using useRouter

Creating shared layout

Understanding layout components

Creating a header

Creating dynamic routes

Understanding dynamic routes

Creating a blog post dynamic route

Using search parameters

Understanding search parameters

Adding search functionality to the app

Summary

Questions

Answers

Part 3:Data

Server Component Data Fetching and Server

Function Mutations

Technical requirements

Understanding server-side and client-side
data fetching

Client-side data fetching

Server-side data fetching

Understanding the benefits

Getting set up

Creating the project

Setting up the database

Fetching data using an RSC

Implementing query functions

Calling query functions from RSCs

Adding type safety to a database query

Adding loading indicators using React
Suspense

Understanding the need for loading indicators

Adding a delay

Understanding React Suspense

Implementing loading indicators

Handling errors with React error boundaries

Understanding React error boundaries

Implementing error boundaries

Mutating data using a Server Function

Understanding a Server Function

Creating a Server Function

Adding a progress indicator

Handling errors

Summary

Questions

Answers

Client Component Data Fetching and
Mutations with TanStack Query

Technical requirements

Fetching data using TanStack Query

Understanding the challenges with useEffect

for data fetching

Understanding TanStack Query

Setting up the project

Fetching blog post data

Using a Route Handler with TanStack Query

Understanding the benefits of Route Handlers

Using Route Handlers

Adding type safety to the API response

Mutating data using a TanStack Query
mutation

Understanding TanStack Query mutations

Using useMutation

Summary

Questions

Answers

Working with Forms

Technical requirements

Using basic forms

Creating the project

Creating a native form

Using a Route Handler for submission

Creating a database mutation

Creating a Route Handler

Integrating the form submission with the

Route Handler

Using a Server Action for submission

Understanding Server Actions

Using a Server Action in ContactForm

Adding server validation

Using useFormStatus

Understanding useFormStatus

Using useFormStatus

Using useActionState

Understanding useActionState

Using useActionState

Returning state from the Server Action

Adding action state to the form

Adding field errors

Using React Hook Form

Understanding React Hook Form

Understanding client-side validation

Understanding the useForm Hook

Understanding the register function

Specifying validation

Obtaining validation errors

Handling submission

Using React Hook Form

Implementing optimistic updates

Understanding useOptimistic

Using useOptimistic

Adding an unoptimistic contacts page

Making done optimistic

Summary

Questions

Answers

Part 4:Advanced React

State Management

Technical requirements

Understanding the types of state

Server state

Form state

URL state

Local state

Derived state

Shared state

Using prop drilling

Creating the project

Understanding and using prop drilling

Using better composition

Using React context

Understanding React context

Using React context

Using Zustand

Understanding Zustand

Using Zustand

Using TanStack Query and URL parameters

Using TanStack Query

Using URL parameters

Summary

Questions

Answers

Reusable Components

Technical requirements

Creating the project

Using generic props

Understanding generics

Generic functions

Generic types

The keyof operator

Generic React components

Creating a basic list component

Using prop spreading

Using render props

Understanding the render props pattern

Adding a renderItem prop

Adding checked functionality

Creating custom hooks

Understanding custom hooks

Extracting checked logic into a custom hook

Allowing the internal state to be controlled

Understanding how the internal state can be
controlled

Allowing checkedlds to be controlled

Summary

Questions

Answers

Unit Testing with Vitest and the React
Testing Library

Technical requirements

Testing pure functions

Understanding a test

Testing isChecked

Testing exceptions

Running tests

Testing components

Understanding the React Testing Library

A basic component test

Understanding queries

Implementing checklist component tests

Using test IDs

Simulating user interactions

Understanding fireEvent and user-event

Implementing checklist tests for checking

Getting code coverage

Installing the code coverage tool

Running code coverage

Understanding the code coverage report

Gaining full coverage on the checklist
component

Ignoring files in the coverage report

Summary

Questions

Answers

Other Books You May Enjoy

Preface

React was built by Meta to provide more structure to its code base
and allow it to scale much better. React worked so well for
Facebook that they eventually made it open source. Today, React is
the dominant technology for building frontends; it allows us to
build small, isolated, and highly reusable components that can be
composed together to create complex frontends. With
advancements such as React Server Components, React has further
expanded its capabilities, enabling developers to seamlessly
combine server-side rendering and client-side interactivity for

highly optimized and dynamic applications.

TypeScript was built by Microsoft to help developers more easily
develop large JavaScript-based programs. It is a superset of
JavaScript that brings a rich type system to it. This type system helps
developers catch bugs early and allows tools to be created to

navigate and refactor code robustly.

This book will teach you how to use both of these technologies to
create large, sophisticated frontends that are easy to maintain,
while also exploring modern features such as React Server

Components to enhance performance and productivity.

Who this book is for

If you are a developer who wants to create large and complex
frontends with React and TypeScript, this book is for you. The book
doesn’'t assume you have any previous knowledge of React or
TypeScript — however, basic knowledge of JavaScript, HTML, and
CSS will help you get to grips with the concepts covered.

What this book covers

Chapter 1, Getting Started with React, covers creating React projects
and the fundamentals of building React components. This includes
making a component configurable using props and interactive

using state.

Chapter 2, Getting Started with TypeScript, starts with the

fundamentals of TypeScript and its type system. This includes using

inbuilt types as well as creating new types. The chapter then covers

creating a React component with TypeScript types.

Chapter 3, Using React Hooks, details the common React Hooks and

their typical use cases. The chapter also covers how to use the

Hooks with TypeScript to make them type-safe.

Chapter 4, Approaches to Styling React Frontends, walks through

how to style React components using several different approaches.

The benefits of each approach are also explored.

Chapter 5, Using React Server and Client Components, covers how

and when to use React Server Components and Client Components

and also how to compose them together.

Chapter 6, Creating a Multi-Page App with Next.js, covers the

fundamentals of building multi-page apps in a popular React

framework called Next.js. This includes implementing different

pages, links between them, and page parameters.

Chapter 7, Server Component Data Fetching and Server Function
Mutations, demonstrates how React Server Components can fetch
data from a database. The chapter also includes mutating database

data using a React Server Function.

Chapter 8, Client Component Data Fetching and Mutations with
TanStack Query, covers how React Client Components can fetch
and mutate data from a database using a popular library called

TanStack Query.

Chapter9, Working with Forms, explores how forms can be

implemented using several different approaches, including the

latest React Hooks and a popular forms library.

Chapter 10, State Management, walks through how React state can

be shared between different components. Several approaches are

explored along with their benefits.

Chapter 11, Reusable Components, brings in several patterns for

making React components highly reusable but still type-safe.

Chapter 12, Unit Testing with Vitest and the React Testing Library,

first delves into how functions can be tested with Vitest. The
chapter then moves on to how React components can be tested with

the help of the React Testing Library.

To get the most out of this book

To follow along with this book, you'll need to have the following

technologies installed on your Windows or macOS computer:

« A modern browser, such as Google Chrome, which you can download

from https://www.google.com/chrome

« Node.js and npm, available at https://nodejs.org/en/download

« Visual Studio Code, downloadable from https://code.visualstudio.com

Software/hardware covered in the book

React 19 or later

Next.js 15 or later

TypeScript 5 or later

If you are using the digital version of this book, we advise you to
type the code yourself or access the code from the book’s GitHub
repository (a link is available in the next section). Doing so will
help you avoid any potential errors related to the copying and

pasting of code.

Download the example code files

https://www.google.com/chrome
https://nodejs.org/en/download
https://code.visualstudio.com/

You can download the example code files for this book from GitHub

at https://github.com/PacktPublishing/Learn-React-with-

TypeScript-Third-Edition/tree/main/. If there’s an update to the

code, it will be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and

videos available at https://github.com/PacktPublishing/. Check

them out!

Conventions used

There are a number of text conventions used throughout this book.

Code in text:Indicates code words in text, database table
names, folder names, filenames, file extensions, pathnames, dummy
URLs, user input, and Twitter handles. Here is an example: “We
used the Form component from Next.js to optimize the form

submission performance.”

A block of code is set as follows:

export default function Home ()
return (
<mains
</mains>
) ;
)

https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/tree/main/
https://github.com/PacktPublishing/

When we wish to draw your attention to a particular part of a code

block, the relevant lines or items are set in bold:

import Form from ‘next/form’;

export function ContactForm() {
return (
<Form ... >
</Form>
) ;

Any command-line input or output is written as follows:

npm run dev

Bold: Indicates a new term, an important word, or words that you
see onscreen. For instance, words in menus or dialog boxes appear
in bold. Here is an example: “In the running app, try clicking the

Done button to mark an item as done.”

TIPS OR IMPORTANT NOTES
Appear like this.

Get in touch

Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this

book, email us at customercare@packtpub.com and mention the

book title in the subject of your message.

Errata: Although we have taken every care to ensure the accuracy
of our content, mistakes do happen. If you have found a mistake in
this book, we would be grateful if you would report this to us.

Please visit www.packtpub.com/support/errata and fill in the form.

Piracy: If you come across any illegal copies of our works in any
form on the internet, we would be grateful if you would provide us
with the location address or website name. Please contact us at

copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that
you have expertise in and you are interested in either writing or

contributing to a book, please visit authors.packtpub.com.

Share Your Thoughts

Once you've read Learn React with TypeScript, Third Edition, wed
love to hear your thoughts! Please click here to go straight to the

Amazon review pag for this book and share your feedback.

Your review is important to us and the tech community and will

help us make sure we’re delivering excellent quality content.

mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com/
https://packt.link/r/1836643179

Download a Free PDF Copy of This
Book

Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print

books everywhere?

Is your eBook purchase not compatible with the device of your

choice?

Don't worry, now with every Packt book you get a DRM-free PDF

version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste
code from your favorite technical books directly into your

application.

The perks don't stop there, you can get exclusive access to

discounts, newsletters, and great free content in your inbox daily.

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below:

https://packt.link/free-ebook/9781836643173

2. Submit your proof of purchase.

3. Thats it! We'll send your free PDF and other benefits to your email
directly.

https://packt.link/free-ebook/9781836643173

Part 1: Introduction

This part will get you started with both React and TypeScript,
learning how to create a new project and implement interactive
type-safe components. We will also learn about React’s common
Hooks in detail and the cases in which they are used in applications.

This part has the following chapters:

o Chapter 1, Getting Started with React

1
Getting Started with React

Facebook has become an incredibly popular app. As its popularity
has grown, so has the demand for new features. React is Meta’s
answer to helping more people work on the Facebook code base
and deliver features more quickly. React has worked so well for
Facebook that Meta eventually made it open source. Today, React is
a mature library for building component-based frontends that is

extremely popular and has a massive community and ecosystem.

TypeScript is also a popular, mature library maintained by another
big company, Microsoft. It allows users to add a rich type system to
their JavaScript code, helping them be more productive,

particularly in large code bases.

This book will teach you how to use these awesome libraries to build
robust frontends that are easy to maintain. The first two chapters in
the book will introduce React and TypeScript separately. You'll then
learn how to use React and TypeScript together to compose robust
components with strong typing. There is a whole chapter on the
recently released React Server Components (RSCs), which offer

significant performance and productivity gains. The book covers all

the key topics you'll need to build a web frontend, such as styling,

forms, data fetching, and data mutation.

In this chapter, we will introduce React and understand its benefits.
We will then build a simple React component, learning about the
component syntax and how to make it configurable. After that, we
will learn how to make a component interactive using component
state and events. At the end of the chapter, we will learn how to use

React’s development tools.

By the end of this first chapter, you'll be able to create simple React
components and will be ready to learn how to strongly type them

with TypeScript.

In this chapter, we’ll cover the following topics:
« Understanding the benefits of React
+ Setting up a React project
« Understanding the structure of a React app
o Creating a component
» Using props
» Using state
« Using events

« Using React developer tools

Technical requirements

We use the following tools in this chapter:

« Browser: A modern browser such as Google Chrome.

o Terminal: We will use a terminal to execute commands to create a React
project. The default terminal available in your operating system will

work fine.

« Visual Studio Code: We need a code editor to create our first React
component. Visual Studio Code is a popular editor that we'll use
throughout this book. This can be downloaded and installed from

https://code.visualstudio.com.

 Node.js and npm: Node.js will be required to build our React app and
run it on a development server. npm is a package manager that allows
us to easily install libraries into our app. These tools come together and

can be downloaded and installed from https://nodejs.org/en/download.

All the code snippets in this chapter can be found online at
https://github.com/PacktPublishing/Learn-React-with-TypeScript-
Third-Edition/tree/main/Chapter01.

Understanding the benefits of React

Before we start creating our first React component, in this section,

we will understand what React is and explore some of its benefits.

https://code.visualstudio.com/
https://nodejs.org/en/download
https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/tree/main/Chapter01

React is an incredibly popular frontend library. We have already
mentioned that Meta uses React for Facebook, but many other
famous companies use it too, such as Netflix, Uber, and Airbnb.
React’s popularity has resulted in a huge ecosystem surrounding it
that includes great tools, popular libraries, and many experienced

developers.

One reason for React’s popularity is that it is simple. This is because
it focuses on doing one thing very well — providing a powerful
mechanism for building UI components. Components are pieces of
the UI that can be composed together to create a frontend.
Furthermore, components can be reusable so that they can be used

on different screens or even in other apps.

React’s narrow focus means it can be incorporated into an existing
app, even if it uses a different framework. This is because it doesn’t
need to take over the whole app to run; it is happy to run as part of

an apps frontend.

React components are displayed performantly using a virtual
Document Object Model (DOM). You may be familiar with the real
DOM - it provides the structure for a web page. However, changes
to the real DOM can be costly, leading to performance problems in
an interactive app. React solves this performance problem by using
an in-memory representation of the real DOM called a virtual

DOM. Before React changes the real DOM, it produces a new

virtual DOM and compares it against the current virtual DOM to
calculate the minimum amount of changes required to the real

DOM. The real DOM is then updated with those minimum

changes.

React’s recent addition of Server Components enables very
performant data fetching and reduces the amount of JavaScript sent
from the server to the browser. Couple this with React server
functions and you also have an extremely productive development

experience.

React Native, a framework based on React, allows us to build cross-
platform apps for iOS and Android, similar to how we use React to
build web applications. The core React development skills are the

same across both technologies, and code can be shared and reused

as well.

The fact that Meta uses React for Facebook is a major benefit
because it ensures that it is of the highest quality — React breaking
Facebook is not good for Meta! It also means a lot of thought and
care goes into ensuring new versions of React are cheap to adopt,

which helps reduce the maintenance costs of an app.

React’s simplicity means it is easy and quick to learn. There are
many great learning resources, such as this book. There is also a

range of tools that make it very easy to scaffold a React app — one

such tool is called Vite, which we will learn about later in this

chapter.

Now that we are starting to understand React, we will create our

first React project in the next section.

Creating a React project

In this section, we will create a React project and configure Visual
Studio Code to work optimally with it. We will also cover how to
run a React app in development mode and also how to produce a

production build.

We will create a React project using Vite, a popular build tool and

development server for React apps. Carry out the following steps:

1. In a terminal, in a folder of your choice, execute the following

command to instruct Vite to create a project:

npm create vite@latest

2. A prompt for the project name appears. The project name will be the
folder name containing the project code. So, enter a name of your

choice and press Enter.

)} npm create vite@latest

Need to install the following packages:
create-vite(@6.3.1

Tk to proceed? (y) vy

¢ Project name:

[first-react-projectl

Figure 1.1 — Creating a Vite project

3. A prompt now appears for the framework for the project. Select React

by using the down arrow key to move to React and press Enter.

¢+ Select a framework:
Vanilla
Vue
React
Preact
Lit
Svelte
Solid
Qwik
Angular
Others

OO0 00000 eOoOo

Figure 1.2 — Selecting the React framework

4. Lastly, the variant is prompted for. Select JavaScript, using the down
arrow key, and press Enter. Note that we will explore the TypeScript

option in the next chapter.

5. The project is created in the folder name you chose. The terminal lists

the following three commands that it suggests should be run:

¢ cd <your-project-name>: This will change the working

directory to the one just created

« npm install: This will install npm packages that the initial

project depends on

e npm run dev: This will run the app in development mode

6. Run the first two suggested commands in the terminal so that the
project is the working directory and the project dependencies are

installed.

Next, we are going to inspect the project before running the last

suggested command to run the app in development mode.

Understanding the project

Now that the project is created, we are going to take some time to
understand the folders and files that Vite has created. Carry out the

following steps:

1. Open Visual Studio Code in the project directory. This can be done

using the following command in the terminal:

code .

2. Look at the folders and files in the project in the Explorer panel on the

left. The following are brief descriptions of these:

« node modules: This contains all dependent npm packages
and was created when they were installed in the project using

the npm install command.

« Public: This stores static assets such as images to be served at

the root path (/).
e Src: This holds our source code files, including the following:

« main. jsx: Contains logic for loading the React app

into the root web page, index.html

index.css: Global styles for the app

App . jsx: The top-level React component called App

App . css: Styles for the App component

.gitignore: This specifies which folders and files are to be

ignored by Git.

e eslint.config.js: This is a configuration file for ESLint,
which is a tool that checks code for potential errors and

deviations from coding standards.

« index.html: This is the root web page. The React app is

loaded into this at runtime.

« package. json: This defines the project name, version,

dependencies, scripts, and other project metadata.

« package-1lock. json: This holds exact versions for
dependencies, ensuring consistency when the project is run in

different environments.

e README .md: This contains information about the Vite

template used to create the project. It is typically overwritten

with information about the app being developed, such as an

overview and steps to set up the development environment.

« vite.config. js: This contains the configuration for Vite.

For this project, a Vite React plugin has been specified.

Now that we are starting to understand the folders and files in the

React project, we'll fully set up linting.

Adding linting to Visual Studio Code

Linting is the process of checking code for potential problems. It is
common practice to use linting tools to catch problems early in the
development process as code is written. ESLint is a popular tool
that can lint React and TypeScript code. Fortunately, Vite has

already installed and configured ESLint in our project.

Editors such as Visual Studio Code can be integrated with ESLint to
highlight potential problems. Carry out the following steps to

install an ESLint extension into Visual Studio Code:

1. Open up the EXTENSIONS area in Visual Studio Code. The Extensions
option is in the Preferences menu in the File menu on Windows or the

Settings... menu in the Code menu on a Mac.

2. A list of extensions will appear on the left-hand side and the search box
above the extensions list can be used to find a particular extension.

Enter eslint into the extensions list search box.

EXTENSIONS: MARKETPLACE O

‘ eslint = V’
V ESLint > 37.8M % 4.5
@ Integrates ESLint JavaScript into VS Code.

% Microsoft

Figure 1.3 — Visual Studio Code ESLint extension

An extension by Microsoft called ESLint should appear at the top of
the list.

3. Click the Install button to install the extension.

4. Now, we need to make sure the ESLint extension is configured to check
React and TypeScript. So, open the Settings area in Visual Studio Code.
The Settings option is in the Preferences menu in the File menu on

Windows or the Settings... menu in the Code menu on a Mac.

5. In the Settings search box, enter eslint: probe and select the
Workspace tab:

== Settings X D m -

‘ eslint: probe 1 Setting Found = Y ‘
User Workspace Backup and Sync Settings
Eslint: Probe

An array of language ids for which the extension should probe if support is installed.

astro
javascript
javascriptreact
typescript
typescriptreact
html

mdx

vue

markdown

json

jsonc

Figure 1.4 — Visual Studio Code ESLint Probe settings
This setting defines the languages to use when ESLint checks code.

6. Make sure that typescript and typescriptreact are on the list. If not, add
them using the Add Item button.

The ESLint extension for Visual Studio Code is now installed

and configured in the project.

7. Before we move on, there is one ESLint rule we are going to switch off,
which is the checking of React component prop types. We won't be

using this React feature because we will eventually be strongly typing

React components using TypeScript. Open eslint.config.js and

add the highlighted line to the rules field to switch this rule off:

rules: {

L 4

‘react/prop-types’: ‘off’,

}

For more information about ESLint, see the following link:

https://eslint.org/.

Next, we will add automatic code formatting to the project.

Adding code formatting

The next tool we will set up automatically formats code. Automatic
code formatting ensures code is consistently formatted, which helps
its readability. Having consistently formatted code also helps
developers see the important changes in a code review - rather

than differences in formatting.

Prettier is a popular tool capable of formatting React and
TypeScript code. Unfortunately, Vite doesn't install and configure
this for us. Carry out the following steps to install and configure

Prettier in the project:

1. Install Prettier using the following command in the terminal in Visual
Studio Code:

https://eslint.org/

npm install --save-dev prettier

The - -save-dev option specifies that prettier should be
installed as a development-only dependency. This is because
Prettier is only required during development and not at

runtime.

A shortened version of this command is as follows:
npm i -D prettier

Here, i is short for install, and -D is short for - -save-dev.

. Prettier has overlapping style rules with ESLint, so install the following
library to allow Prettier to take responsibility for the styling rules from

ESLint:

npm i -D eslint-config-prettier
. The ESLint configuration needs to be updated to allow Prettier to

manage the styling rules. Open the eslint.config. js file, which

is at the root of the project, and add the following highlighted lines:

import prettier from “eslint-config-prettier”;
export default [

LI 4

prettier

1;
4. Prettier can be configured in a file called .prettierrc.json.

Create this file with the following content in the root folder:

“printWidth”: 100,
“singleQuote”: true,
“semi”: true,
“tabwidth”: 2,
“trailingComma”: “all”,
“endOfLine” : “auto”

J
We have specified the following:

o Lines wrap at 100 characters

String qualifiers are single quotes

Semicolons are placed at the end of statements

The indentation level is two spaces

A trailing comma is added to multi-line arrays and objects

Existing line endings are maintained

NOTE

More information on the configuration options can be found at the following

link: https://prettier.io/docs/en/options. html.

Prettier is now installed and configured in the project.

Visual Studio Code can integrate with Prettier to automatically
format code when source files are saved. So, let’s install a Prettier

extension in Visual Studio Code:

https://prettier.io/docs/en/options.html

1. Open the EXTENSIONS area in Visual Studio Code and enter
prettier into the extensions list search box. An extension called

Prettier - Code formatter should appear at the top of the list:

EXTENSIONS: MARKETPLACE O
prettier =Y
Prettier - Code formatter < 49.2M % 35
E Code formatter using prettier
@ Prettier =0

Figure 1.5 — Visual Studio Code Prettier extension
2. Click the Install button to install the extension.
3. Next, open the Settings area in Visual Studio Code. Select the
Workspace tab and make sure the Format On Save option is ticked:
2 Settings X 9 g -

format on save 7 Settings Found =x %/

User Workspace Backup and Sync Settings

Editor: Format On Save

@ Format a file on save. A formatter must be available, the file must not be
saved after delay, and the editor must not be shutting down.

Figure 1.6 — Visual Studio Code Format On Save setting

This setting tells Visual Studio Code to automatically format code

in files that are saved.

4. There is one more setting to set. This is the default formatter that Visual
Studio Code should use to format the code. Click the Workspace tab

and make sure Default Formatter is set to Prettier - Code formatter:

< Settings X TS m -

default formatter 9 Settings Found = Y

User Workspace Backup and Sync Settings

Editor: Default Formatter

Defines a default formatter which takes precedence over all other formatter
settings. Must be the identifier of an extension contributing a formatter.

Prettier - Code formatter v

Figure 1.7 — Visual Studio Code Default Formatter setting

The Prettier extension for Visual Studio Code is now installed and

configured in the project. Next, we will run the app in development

mode.

Starting the app in development mode

Vite has a development server that the project’s app can run on.
Carry out the following steps to run the app in development mode:
1. Vite has already created an npm script called dev, which runs the app

in development mode. Run this script in the terminal as follows:

npm run dev

2. The app will start running on the Vite development server on localhost
on port 5173 by default (the port can be changed in Vite’s
configuration). The browser URL for the app will appear in the
terminal, which is http://localhost:5173/ by default. Go to this URL in a

browser and you'll see the app running:

[] [] WV Vite + React x = N

£ ™
€ C @ localhost:5173 (® Guest)
A o

Vite + React

countis 0

Edit src/App. jsx and save to test HMR

Click on the Vite and React logos to learn more

Figure 1.8 — The React app running in development mode

Vite not only serves the app on its development server but it also
transpiles React components into JavaScript code that can run in

the browser. It does all this incredibly fast!

http://localhost:5173/

3. We will make a simple change to the code now while the app is still
running. In the code editor, open the index.html file at the project’s
root. Find the HTML title element, which specifies the title that

appears on the browser tab.
4. Make a change to the contents of the title element by putting an

exclamation mark at the end of it:

<title>Vite + Reactl!</titles>

Notice that the browser tab title updates immediately after you

save the changes to the index.html file:

@ @ V/ Vite + React! X +

& C @ localhost:5173

Figure 1.9 — Updated app title

Vite automatically does any required transpilation and reloads the

app in the browser in a very efficient manner.

5. Stop the app from running before continuing. The shortcut key for
stopping the app is Ctrl + C.

We have now seen how Vite provides a productive development

experience. Next, we will produce a production build.

Producing a production build

A production build transpiles React components into JavaScript
code similar to when running the app in development mode.
However, it carries out several other processes on top of this so that

the app runs in a performant manner in production.

One of the processes is minification. Minification is the process of
removing all unnecessary characters from source

code without impacting its functionality, which includes removing
whitespace and comments and shortening variable names. This

results in a smaller file size, leading to faster load times.

Another process also involves merging files so that the code is
downloaded and executed in a performant manner in production.
This process is often referred to as bundling, and the output file is
often referred to as a bundle. Bundles are often separated into
smaller chunks to decrease the app’s load time (e.g., a bundle per
page in the app). Bundlers also tree-shake redundant code out, to
keep the size of the bundles as small as possible for better

performance.

Carry out the following steps to produce a production build of our
app:

1. Vite has already created an npm script called build that produces all
the artifacts for deployment to production. Run this script in the

terminal as follows:

npm run build

After a few seconds, the deployment artifacts are placed in a

dist folder.

2. Open the dist folder - it contains many files. The root file is
index.html, which references the other JavaScript, CSS, and image
files. Open some of the files and view their content; you'll see that they
are optimized for production with whitespace removed and the

JavaScript minified.

This completes the production build and the React project setup
with Vite. Here’s a recap of the key points for creating a React

project with Vite:

e Vite can quickly set up a React project using the npm create

vite@latest command.

« Vite sets up many useful project features, such as linting. Using the
ESLint Visual Code extension improves the linting experience when

writing code.

 One feature that Vite doesn't set up is automatic code formatting.
However, Prettier can be installed and configured to provide this

capability.

o The app can be run in development code using the npm run dev
command, and a production build can be created with npm run

build.

Keep this project safe because we will continue to use it in the next

section when we understand the structure of a React app.

Understanding the structure of a
React app

In this section, we will explore the entry point of the React app
created in the last section and how it is loaded into the HTML page.
We will then learn about the React component tree and how a

component is defined.

Understanding the React entry point

The entry point of this React app is in the main. jsx file in the src
folder. Open this file and inspect its contents. It contains a call to

React’s createRoot function as follows:

createRoot (document .getElementById(‘'root’)) .rende
r(
<StrictMode>

<App />
</StrictMode>,

)

Here’s an explanation of this code:

o As the name suggests, createRoot creates a root in the HTML

document for the React components. createRoot takes in a DOM

element for where to place the React components, which is the element

that has the ID of ‘root’ in this case.

« createRoot returns an object containing a render function. The
render function takes in the React components to display in the root
DOM element. This displaying process is often referred to as rendering.
In this case, the React components to display are an App component
inside a StrictMode component. The syntax for the React

components to display is JSX.

NOTE

JSX stands for JavaScript XML, which is a syntax extension for JavaScript that
allows developers to write HTML-like code within JavaScript/TypeScript.

It enables the creation of React components in a readable and declarative
way, making it easy to visualize the Ul structure. JSX needs to be transpiled
into reqular JavaScript function calls using a tool such as Babel. For more

information on JSX, see the following link: https://react.dev/learn/writing-

markup-with-jsx.

« The StrictMode component is a special React component that helps
identify potential problems. It activates additional checks and outputs

warnings to the browser console in development mode.

Next, we will take some time to understand the React component

tree.

Understanding the React component tree

https://react.dev/learn/writing-markup-with-jsx

A React app is structured in a tree of components. The root
component is the component at the top of the tree. In our project,

the root component is the strictMode component.

React components can be nested inside another React component.
The App component is nested inside the StrictMode component
in our project. This is powerful because any component can be

placed inside strictMode - it doesn't necessarily need to be App.

React components can output one or more other React

components. The following is an example of a React component

tree:
StrictMode
App
—— I—\
Header Main Footer

Figure 1.10 — A React component tree

If our App component rendered other React components (Header,
Main, and Footer), the component tree would be as in the

preceding figure.

Next, we'll start to understand how a React component is defined.

Understanding a React component

We will now understand the implementation of a basic React

component.

Open App . j sx, which contains the definition for the app
component. We won't fully understand the component at this stage,

but notice it’s just a regular JavaScript function.

Let’s focus on what the function returns - it returns JSX
representing the Ul Notice that the JSX references HTML
elements such as div, a, h1l, button, and p. So, JSX can output
HTML elements as well as other React components. The App
component currently only outputs HTML elements and not any

other React components.

Notice the top-level JSX element in the return statement, <>, that
doesn’'t have a name. This is a React fragment, which provides a way

to group elements without creating a DOM element.

Still focusing on the JSX, notice the JavaScript code in curly

brackets. For example, look at the JSX for the but ton element:

<button onClick={() => setCount((count) => count
+ 1) }>

count is {count}
</buttons>

The onClick attribute is set to an anonymous JavaScript function
that calls another function called setCount. We will understand

what the onClick attribute does later in this chapter - the key

point for now is that JSX can include JavaScript. Notice also that the
button content also contains a reference to a JavaScript variable
called count. Referencing JavaScript functions and variables in JSX

allows component output to be dynamic.
That brings us to the end of this section. Let’s recap:

o The entry point of a Vite React app is located in the main. jsx file,

where the createRoot function is used to render React components
« A React app is structured into a tree of components

« A React component is a regular JavaScript function that returns JSX

representing the dynamic Ul

Next, it is time to create a React component.

Creating a component

In this section, we will create a React component and reference this

within the App component.

Creating a basic Alert component

We are going to create a component that displays an alert, which
we will simply call Alert. It will consist of an icon, a heading, and a

message.

NOTE

A React component name must start with a capital letter. If a component

name starts with a lowercase letter, it is treated as a DOM element and won't

render properly.

Carry out the following steps to create the component in the

project:

1. Create a new file in the src folder called Alert. jsx.

NOTE

The filename for component files isn't important to React or the React
transpiler. It is common practice to use the same name as the component,
either in Pascal or snake case. However, the file extension must be . js or

. jsx for React transpilers to recognize these as React components.

2. Open the Alert. jsx file and enter the following code in it:

function Alert () {
return (
<div>
<div>

A< /span>
0h no!
</div>
<div>Something went wrong</div>
</div>

) ;

Remember that the code snippets are available online to copy.
The link to the preceding snippet can be found at
https://github.com/PacktPublishing/Learn-React-with-

TypeScript-Third-Edition/tree/main/Chapter01/creating-a-

component.

The component renders the following items:

« A warning icon (note that this is a warning emoji)
« A title: Oh no!

* A message: Something went wrong

NOTE

The roleand aria-Ilabel attributes have been added to the span
element containing the warning icon to help screen readers understand that
this is an image with a title of warning.

For more information on the img role, see https://developer.mozilla.org/en-
US/docs/Web/Accessibility/ARIA/Roles/img _role.

For more information on the aria-1abel attribute, see

https://developer.mozilla.org/en-
US/docs/Web/Accessibility/ARIA/Attributes/aria-label.

3. Alternatively, a React component can be implemented using arrow
function syntax. The following code snippet is an arrow syntax version

of the Alert component:

https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/tree/main/Chapter01/creating-a-component
https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA/Roles/img_role
https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA/Attributes/aria-label

const Alert = () => {
return (
<div>
<div>

A

0Oh no!
</div>
<div>Something went wrong</div>
</div>
)
}i

NOTE

There aren't any significant differences between arrow functions and normal
functions in the context of React function components. So, it is down to
personal preference which one you choose. This book generally uses reqular
function syntax because it has fewer characters to type; however, if you wish,
you can find more information on JavaScript arrow functions here:

https://developer.mozilla.org/en-

US/docs/Web/JavaScript/Reference/Functions/Arrow_functions.

Congratulations, you have created your first React component!

There is a linting error in the file we have just created, highlighted
by ESLint. The error is that the Alert component is unused. Ignore

the error for now — we’ll resolve it later in this chapter.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions

function &kg:&() {

return rast refresh only works when a file has exports. Move your
<div> component(s) to a separate file. eslint(react-refresh/only-export-
<di components)
=
'Alert' is defined but never used. eslint(no-unused-vars)

< function Alert(): React.JSX.Element
<

</d
<div>Something went wrong</div>
</div>
)
5

View Problem (XF8) Quick Fix... (8.)

Figure 1.11 — ESLint error

If the app was running, the Alert component wouldn't appear in
the browser yet. This is because it hasn't been added to the React

component tree yet. We'll do this in the next section.

Adding Alert to the App component

Going back to the Alert component in our project, we will
reference Alert in the App component. We will also remove the
existing content in the App component so that it only renders the

alert. To do this, carry out the following steps:

1. First, we need to export the Alert component so that it is available in
other files. Open Alert.jsx and add the export keyword before
the Alert function:

export function Alert () {

}

NOTE

It is common practice to have each React component in a separate file. This
helps prevent files from becoming too large and helps the readability of the

code base.

Notice that the ESLint error is now resolved because Alert can

now potentially be used by other files.

2. Now, we can import Alert into the App. jsx file. Open App.jsx
and add the following import statement at the top of the file:

import { Alert } from ‘./Alert’;

3. Remove the other import statements so that the alert is in the only

import.

4. We can now reference Alert in the App components JSX. Replace the
App component definition with the following so that it only renders the

alert:

function App () {
return <Alert />;
}

5. Run the app in development mode by executing the npm run dewv
command in the terminal and opening the apps URL in a browser. The

component will now display in the browser on the page:

@ & W Vite + React! X -+ v

o« (%) (O localhost:5173 ® Guest

.0Oh no!
Something went wrong

Figure 1.12 — Alert component in the app

Nice! If you have noticed that the Alert component isn't styled

nicely, don’t worry — we will learn how to style it in Chapter 4,

Approaches to Styling React Frontends.

Here’s a recap of this section:

« React component names start with an uppercase letter, and the

filename should have a . js or . jsx extension.

¢ We created an Alert component that displays a warning icon, a title,

and a message.

 Generally, a React component is structured in its own file and so needs
to be exported before being referenced in another React component.
We exported the Alert component and imported and used it within

the App component.

Next, we will learn how to make the Alert component a little more
flexible.

Using props

Currently, the Alert component is pretty inflexible. For example,
the alert consumer can’t change the heading or the message. At the
moment, the heading or the message needs to be changed within
Alert itself. Props solve this problem, and we will learn about

them in this section.

NOTE

Props is short for properties. The React community often refers to these as

props, so we will do so in this book.

Understanding props

The props parameter is an optional parameter that is passed into a
React component. This parameter is an object containing the
properties of our choice, allowing a parent component to pass data.
The following code snippet shows a props parameter in a

ContactDetails component:

function ContactDetails (props) {
console.log (props.name) ;
console.log (props.email) ;

}

The props parameter contains the name and email properties in

the preceding code snippet.

NOTE

The parameter doesn't have to be named props, but it is common practice.

Props are passed into a component in JSX as attributes. The prop
names must match what is defined in the component. Here is an
example of passing props into the preceding ContactDetails

component:

<ContactDetails name="”Fred”
email=" fred@somewhere.com” />

So, props make the component output flexible. Consumers of the
component can pass appropriate props into the component to get

the desired output.

Next, we will add some props to the Alert component we have

been working on.

Adding props to the Alert component

In the project, carry out the following steps to add props to the

Alert component to make it more flexible:

1. Start by running the app in development mode if it's not already
running. Do this by running the npm run dev command in the

terminal.

2. Open Alert.jsx and add a props parameter to the function:

export function Alert (props) {

}

3. We will define the following props for the alert:

« type: This will either be “information” or “warning”

and will determine the icon in the alert.
« heading: This will determine the heading of the alert.

e children: This will determine the content of the alert. The
children prop is actually a special prop used for the main

content of a component.
Update the Alert component’s JSX to use the props as follows:

export function Alert (props) {
return (
<div>
<div>
<span
role="img”
aria-label={
props.type === ‘warning’
? ‘Warning’
: ‘Information’

}

>

{props.type === ‘warning’ ? ‘A’ : ‘i’'}

{props.heading}
</div>
<div>{props.children}</div>
</div>

) ;
}

You may notice that the Alert component in the browser now
displays nothing other than an information icon (this is an
information emoji); this is because the App component isn't

passing any props to Alert yet.

4. Open App . jsx and update the Alert component in the JSX to pass

in props as follows:

export default function App()
return (
<div className="App” >
<Alert type="information”
heading="Success” >
Everything is really good!
</Alert>
</div>
)
)

Notice that the Alert component is no longer self-closing so
Everything is really good! can be passed into its

content. The content is passed to the children prop.

The app now displays the configured Alert component:

@lSuccess
Everything is really good!

Figure 1.13 — Configured Alert component in the app

5. We can clean up the Alert component code a little by destructuring

the props parameter.

NOTE

Destructuring is a JavaScript feature that allows properties to be unpacked
from an object. For more information, see the following link:

https://developer.mozilla.org/en-

US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment.

6. Open Alert. jsx again, destructure the function parameter, and

use the unpacked props as follows:

export function Alert ({ type, heading,
children })
return (
<div>
<div>
<span
role="img”
aria-label={
type === ‘warning’ ? ‘Warning’
‘Information’

)

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment

{type === ‘warning’ ? ‘A’ : ‘i’}

{heading}

</div>

<div>{children}</div>

</div>

)
}

This is a little cleaner because we use the unpacked props
directly rather than having to reference them through the

props parameter.

7. We want the type prop to default to “information”. Define this

default as follows:

export function Alert ({
type = ‘information’,
heading,
children

b
}

That completes the implementation of the props in the Alert

component for now. Here’s a quick recap on props:

e Props allow a component to be configured by the consuming JSX and

are passed as JSX attributes

* Props are received in the component definition in an object parameter

and can then be used in its JSX

Next, we will continue to make the Alert component more

sophisticated by allowing it to be closed by the user.

Using state

React component state is a special variable that may change over
the lifecycle of a component. In this section, we’ll learn about the
state variable and use it within our Alert component. We will

use state to allow the alert to be closed by the user.

Understanding state

There isn't a predefined list of states; we define what’s appropriate
for a given component. Some components won't even need any state
— the Alert component hasn’t required a state for the requirements

so far.

The state is a key part of making a component interactive. When a
user interacts with a component, the component’s output may need
to change. A change to the state causes the component to refresh,

more often referred to as re-render.

The state is defined using a useState function from React. The
useState function is one of React’s Hooks. There is a whole

chapter on React Hooks in Chapter 3, Using React Hooks.

The syntax for usestate is as follows:

const [state, setState] = useState(initialState) ;
Here are the key points:

o The initial state value is passed into useState. If no value is passed, it

will initially be undefined.

« useState returns a tuple containing the current state value and a
function to update the state value. The tuple is destructured in the

preceding code snippet.

o The state variable name is state in the preceding code snippet, but we

can choose any meaningful name.

e We can also choose the state setter function name, but it is common

practice to use the same name as the state variable preceded by set.

 Multiple states can be defined by defining multiple instances of

useState. For example, here are definitions for loading and error

states:
const [loading, setLoading] = useState(true) ;
const [error, setError] = useState() ;

Next, we will implement state in the Alert component to

determine whether it is visible or not.

Implementing a visible state in the Alert
component

We will begin by implementing a feature in the Alert component
that allows the user to close it. A key part of that feature is
controlling the alert’s visibility, which we will do with a visible
state. This state will either be true or false and it will initially be

set to true.
Follow these steps to implement a visible state in Alert:

1. If the app isn't already running, do so by running the npm run dev

command in the terminal.
2. Open Alert. jsx in the project.

3. Add the following import statement at the top of the file to import

the useState Hook from React:

import { useState } from ‘react’;

4. Define the visible state as follows in the component definition:

export function Alert(...) {
const [visible, setVisible] =
useState (true) ;
return (

i
}

5. After the state declaration, add a condition that returns null if the

visible state is false. This means nothing will be rendered:

export function Alert(...) {

const [visible, setVisible] =
useState (true) ;
if (!visible) {
return null;
}

return (

i
J

The component will render in the app the same as before
because the visible state is true. Try changing the initial

state value to false, and you will see it disappear.

Currently, the Alert component is making use of the visible
state’s value by not rendering anything if it is false. However, the
component isn't updating the visible state yet — that is,
setVisible is unused at the moment. We will update the
visible state after implementing a close button, which we will

do next.

Adding a close button to Alert

We will add a c1lose button to the Alert component to allow the
user to close it. We will make this configurable so that the alert

consumer can choose whether the close button is rendered.
Carry out the following steps:

1. Start by opening Alert . jsx and addinga closable prop:

export function Alert ({
type = “information”,
heading,
children,
closable

P
J

The consumer of the Alert component will use the closable

prop to specify whether the close button appears.

2. Add a close button between the heading and content as follows:

export function Alert(...) {

return (
<div>
<div>

{heading}
</div>
<button aria-label="Close”>
<span role="img” aria-
label="Close”> X
</button>
<div>{children}</div>
</div>
)
}

Notice that the span element that contains the close icon is

given an “img” role and a “Close” label to help screen readers.

Likewise, the button is also given a “Close” label to help screen

readers.

The close button appears in the Alert component as follows:

@lSuccess
X

Everything is really good!

Figure 1.14 — The close button in the Alert component

3. At the moment, the close button will always render rather than just
when the closable prop is true. We can use a JavaScript logical
AND short circuit expression (represented by the && characters) to
render the close button conditionally. To do this, make the following

highlighted changes:

import { useState } from ‘react’;
export function Alert(...) {

return (
<div>
<div>

{heading}
</div>
{closable && (
<button aria-label="Close”>

X

</button>

)
<iiv>{children}</div>
</div>
)i
J

If closable is a falsy value, the expression will short-circuit
and, consequently, not render the button. However, if closable

is truthy, the button will be rendered.

NOTE

See the following link for more information about logical AND short-circuit
expressions: https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Operators/Logical _AND.

See the following link for JavaScript’s falsy values:

https://developer.mozilla.org/en-US/docs/Glossary/Falsy and

https://developer.mozilla.org/en-US/docs/Glossary/Truthy for truthy values.

4. Open App . jsx and pass the closable prop into Alert:

export default function App()
return (
<div className="App” >

<Alert
type="information”
heading="Success”
closable

>

Everything is really good!

</Alert>

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Logical_AND
https://developer.mozilla.org/en-US/docs/Glossary/Falsy
https://developer.mozilla.org/en-US/docs/Glossary/Truthy

</div>
) i
}

Notice that a value hasn't been explicitly defined on the

closable attribute. We could have passed the value as follows:
closable={true}

However, there is no need to pass the value on a Boolean

attribute. If the Boolean attribute is present on an element, its

value is automatically true.

When the closable attribute is specified, the close button
appears in the Alert component as it did before, in Figure 1.13.
When the closable attribute isn't specified, the close button

doesn't appear:

ESuccess
Everything is really good!

Figure 1.15 — The close button is not in the Alert component

when closable is not specified

Excellent!

Here is a quick recap of what we have learned so far about React

state:

« State is defined using Reacts useState Hook

o The initial value of the state can be passed into the useState Hook

e useState returns a state variable that can be used to render elements

conditionally

e useState also returns a function that can be used to update the value

of the state

You may have noticed that the close button doesn't actually close
the alert. In the next section, we will rectify this as we learn about

events in React.

Using events

Events are another key part of allowing a component to be
interactive. In this section, we will understand what React events
are and how to use events on DOM elements. We will also learn

how to create our own React events.

We will continue to expand the Alert component’s functionality as
we learn about events. We will start by finishing the close button
implementation before creating an event for when the alert has

been closed.

Understanding events

Browser events happen as the user interacts with DOM elements.
For example, clicking a button raises a click event from that

button.

Logic can be executed when an event is raised. For example, an
alert can be closed when its close button is clicked. A function
called an event handler (sometimes referred to as an event listener)
can be registered on an element for an event that contains the logic

to execute when that particular event happens.

NOTE

See the following link for more information on browser events:
https://developer.mozilla.org/en-
US/docs/Learn/JavaScript/Building blocks/Events.

Events in React events are very similar to browser-native events. In
fact, React events are a wrapper on top of the browser’s native

events.

Event handlers in React are generally registered to an element in
JSX using an attribute. The following code snippet registers a

click event handler called handleClick on a button element:

<button onClick={handleClick}>...</buttons>

Next, we will return to our Alert component and implement a

click handler on the close button that closes the alert.

Implementing a close button click handler
in the alert

https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Building_blocks/Events

At the moment, our Alert component contains a close button,
but nothing happens when it is clicked. The alert also contains a
visible state that dictates whether the alert is shown. So, to finish
the close button implementation, we need to add an event
handler when it is clicked that sets the visible state to false.

Carry out the following steps to do this:

1. If the app isn't already running, do so by running the npm run dev

command in the terminal.

2. Open Alert. jsx and register a click handler on the close

button as follows:

<button aria-label="Close” onClicks=
{handleCloseClick}>

We have registered a c1ick handler called

handleCloseClick on the close button.

3. We then need to implement the handleCloseClick function in the
component. Create an empty function to start with, just above the

return statement:

export function Alert(...) {
const [visible, setVisible] =
useState (true) ;
if (!lvisible)
return null;
}
function handleCloseClick() {}
return (

o
J

This may seem a little strange because we have put the
handleCloseClick function inside another function, Alert.
The handler needs to be inside the Alert function so that it has

access to props and state.

Arrow function syntax can be used for event handlers if

preferred. An arrow function version of the handler is as follows:

export function Alert(...) {
const [visible, setVisible] =
useState (true) ;
if (lvisible) {
return null;

}

const handleCloseClick = () => {}
return (

i
J

Event handlers can also be added directly to the element in JSX
as follows:

<button aria-label="Close” onClick={() => {}}>
In the Alert component, we will stick to the named

handleCloseClick event handler function.

4. Now, we can use the visible state setter function to make the

visible state false in the event handler:

function handleCloseClick () {
setVisible(false) ;

}

If you click the close button in the app, the alert disappears.

Nice!

Note that the browser’s reload option can be used to reload the

app and make the Alert component reappear.

Next, we will extend the close button to raise an event when the

alert closes.

Implementing an alert close event

We will now create a custom event in the Alert component. The
event will be raised when the alert is closed so that consumers can

execute logic when this happens.

A custom event in a component is implemented by using a prop.

The prop is a function that is called to raise the event.
To implement an alert close event, follow these steps:

1. Start by opening Alert. jsx and add a prop for the event:

export function Alert ({
type = “information”,
heading,
children,
closable,

onClose

IDERE

We have called the prop onClose.

NOTE

It is common practice to start an event prop name with on.

2. In the handleCloseClick event handler, raise the close event after

the visible state is set to false:

function handleCloseClick () {
setVisible (false) ;
if (onClose) {
onClose() ;

}
J

Notice that we only invoke onClose if it is defined and passed
as a prop by the consumer. This means that we aren't forcing the

consumer to handle this event.

3. We can now handle when an alert is closed in the App component.
Open App . jsx and add the following event handler to Alert in the
JSX:

<Alert
type="information”
heading="Success”
closable
onClose={() => console.log(“closed”)}

Everything is really good!
</Alert>;

We have used an inline event handler this time.

4. In the app, if you click the close button and look at the console, you will
see that closed has been output:

‘e [D Elements Console Sources Network Performance »> &8 : X
M@ topvy @ Y Filter Default levels ¥~ NolIssues 2 hidden §83
closed App.jsx:30

Figure 1.16 — Console output after the alert is closed

That completes the close event and the implementation of the alert

for this chapter.

Here’s what we have learned about React events:

« Events, along with state, allow a component to be interactive
 Event handlers are functions that are registered on elements in JSX

A custom event can be created by implementing a function prop and

invoking it to raise the event

The component we created in this chapter is a function component.
You can also create components using classes. For example, a class
component version of the Alert component is at

https://github.com/PacktPublishing/Learn-React-with-TypeScript-

https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/tree/main/Chapter01/class-component

Third-Edition/tree/main/Chapter01/class-component. However,

function components are dominant in the React community. Here

are a few of the reasons why:
 Generally, they require less code to implement
 Logic inside the component can be more easily reused

 React Hooks can't be used in class components

For these reasons, we will focus solely on function components in

this book.

Next, we will learn how to use the React browser development

tools.

Using React developer tools

React developer tools is a browser extension available for Chrome,
Firefox, and Edge. The tools allow React apps to be inspected and
debugged. In this section, we are going to install and use these tools

on the Alert component we have implemented in this chapter.

The links to the extensions are as follows:

¢ Chrome: https://chromewebstore.google.com/detail/react-developer-

tools/fmkadmapgofadopljbjtkapdkoienihi

o Firefox: https://addons.mozilla.org/en-GB/firefox/addon/react-

https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/tree/main/Chapter01/class-component
https://chromewebstore.google.com/detail/react-developer-tools/fmkadmapgofadopljbjfkapdkoienihi
https://addons.mozilla.org/en-GB/firefox/addon/react-devtools/

 Edge: https://microsoftedge.microsoft.com/addons/detail/react-
developer-tools/gpphktbcpidddadnkolkpfckpihlkkil

Follow the instructions in the relevant link to install the extension
in your browser. You may need to reopen the browser for the tools

to be available.

Using the Components tool

The first tool we are going to explore is the Components tool. It
allows you to inspect the current props and state of a component.
Carry out the following steps to try this tool on our Alert

component:

1. If the app isn't running, start it by executing npm run devina

terminal.

2. Open the browser’s development tools by pressing F12 on Windows or
Cmd + Option + I on a Mac. Reacts developer tools can be found in

two panels called Components and Profiler.

3. Select the Components panel. The React component tree appears.
Selecting the Alert component in the component tree reveals current

information about it:

https://microsoftedge.microsoft.com/addons/detail/react-developer-tools/gpphkfbcpidddadnkolkpfckpihlkkil

i< [o Elements Console Sources Network Performance Memory E3 Components > ES} =

(v Search (text or /regex/) B Alert e s o
~ App props i
Alert
children: "Everything is really good!"
closable: true
heading: “Success"

onClose: f onClose() {}
type: "information"

new entry: ""
hooks s 0
1 State: true

rendered by

App
createRoot()
react-dom

source]
Alert.jsx:5

Figure 1.17 — React development tools Components panel

4. One useful set of component information is the current prop values.
You can change these values and the component output in the browser
will be updated. Try this by changing the children prop. This is a

great way of manually testing that a prop is working as expected.

5. There is also a section for current Hook values, which includes state
values. Notice, however, that the state isnt named - it has a generic
name, State. However, Hooks appear in this section in the order they
appear in the component code, so we can work out what these items
are. In addition, there is a Parse hook names option (with a wizard
icon) that can show the Hook variable names. Click this option to reveal

the state variable name in brackets:

hooks 0

1 State(visible): true

Figure 1.18 — State variable name after the wizard icon is clicked

6. We're going to observe the visible state value change. Make sure
closable is set on the component (you can set this prop to true in
the props section if not). Like props, you can change state values
using the developer tools. Click the checkbox to the right of
State (visible). This toggles the value of the visible state
between true and false and updates the component in the browser

accordingly.

This completes our exploration of the Components tool. Press F5 to
refresh the browser so that the Alert component reappears before

continuing. Next, we will explore the Profiler tool.

Using the Profiler tool

Now, we will explore the Profiler panel. This tool allows interactions
to be profiled, which is useful for tracking performance problems.

Carry out the following steps to profile the closing of the alert:

1. Before we start profiling, we are going to make sure the Profiler tool
captures why components render. Select the Profiler panel and click the
View settings option (the cogicon). After the React developer tools
settings open, click the Profiler tab to view the Profiler settings. Make
sure the Record why each component rendered while profiling. setting
is ticked.

‘e [o Elements Console Sources Network Performance Memory Application €3 Profiler >>

£ General #F Debugging <> Components 1l. Profiler X

Record why each component rendered while profiling.

[Hide commits below 0 (ms)

Figure 1.19 — Profiler settings

2. Close the settings and click the Start profiling option, which is the blue

circle icon.
3. Click the close button in the alert in the app.

4. Click the Stop profiling option, which is the red circle icon. A timeline

appears of all the component re-renders:

[x ﬂ Elements Console Sources Network Performance Memory Application B profiler » B1 £
e C QO 3% § F B e 1 /1 € . - Commit information
App Priority: Immediate

Alert (0.7ms ...

Committed at: 2.9s
Durations

Render: 6. 7ms
Layout effects: <e.1ms
Passive effects: <0.1ms

What caused this update?
Alert

Figure 1.20 — Profile of the alert being closed

This shows that Alert was re-rendered when the close button was

clicked, taking 0.7 milliseconds.

This tool is helpful in quickly spotting the slow components of a

user interaction.

This completes our exploration of the React developer tools. Here’s

a recap:

 The React Components developer tool allows component props and

state to be inspected and tested

« The React Profiler developer tool allows poor-performing user

interactions to be profiled to help pinpoint the root problem

That brings us to the end of the chapter. Next is a chapter summary.

Summary

We now understand that React is a popular library for creating
component-based frontends. In this chapter, we created an Alert

component using React.

Component output is declared using a mix of HTML and JavaScript
called JSX. JSX needs to be transpiled into JavaScript before it can

be executed in a browser.

Props can be passed into a component as JSX attributes. This allows
consumers of the component to control its output and behavior. A
component receives props as an object parameter. The JSX attribute
names form the object parameter property names. We
implemented a range of props in this chapter in the Alert

component.

Events can be handled to execute logic when the user interacts with
the component. We created an event handler for the close button

click event in the Alert component.

State can be used to re-render a component and update its output.
The state is defined using the usestate Hook and is often updated

in event handlers. We created a state for whether the alert is visible.

Custom events can be implemented as a function prop. This allows
consumers of the component to execute logic as the user interacts

with it. We implemented a close event on the Alert component.

The Alert component is an example of a reusable component that
can be used in many places across a large app and even across

different apps.

In the next chapter, we will introduce ourselves to TypeScript. We
will then use TypeScript to strongly type the Alert component we

started in this chapter.

Questions

Answer the following questions to reinforce what you have learned

in this chapter:

1. What is wrong with the following component definition?

export function important ()

return <div>This is really important!</divs>;

}

2. Component props are passed into a component as follows:

<ContactDetails name="Fred”
email="fred@somewhere.com” />

The component is then defined as follows:

export function ContactDetails({ firstName,
email }) {
return (
<div>
<div>{firstName}</div>
<divs>{email}</div>
</div>
) ;
}

The name Fred isn't output though. What is the problem?

3. What is the initial value of the 1loading state defined here?

const [loading, setLoading] = useState(true) ;

4. What is wrong with how the state is set in the following component?

export function Agree () {
const [agree, setAgree] = useStatel() ;
return (
<button onClick={() => agree = true}>

Click to agree
</button>
) ;
)

5. The following component implements an optional Agree event. What

is wrong with this implementation?

export function Agree ({ onAgree }) {
function handleClick () {
onAgree () ;

}

return (
<button onClick={handleClick}>
Click to agree
</button>
) i

Answers

Here are the answers to the preceding questions:

1. The problem with the component definition is that its name is in
lowercase. React functions must be named with an uppercase first

character:

export function Important ()

}

2. The problem is that a name prop is passed rather than £irstName.

Here’s the corrected JSX:

<ContactDetails firstName="Fred”
emall="fred@somewhere.com” />

3. The initial value of the loading state is true.

4. The state isnt updated using the state setter function. Heres the

corrected version of the state being set:

export function Agree () {
const [agree, setAgree] = useStatel() ;
return (
<button onClick={() => setAgree(true) }>
Click to agree
</button>
) i
}

5. The problem is that clicking the button will cause an error if onAgree
isn't passed because it will be undefined. Here’s the corrected version

of the component:

export function Agree ({ onAgree }) {
function handleClick () {
if (onAgree) {
onAgree () ;
}

}

return (
<button onClick={handleClick}>
Click to agree
</button>
) ;
)

Learn more on Discord

To join the Discord community for this book — where you can share
feedback, ask questions to the author, and learn about new releases

— follow the QR code below:

https://packt.link/GxSkC

https://packt.link/GxSkC

2
Getting Started with TypeScript

In this chapter, we will start by understanding what TypeScript is
and how it provides a much richer type system on top of JavaScript.
We will learn about the basic types in TypeScript, such as numbers
and strings, and then how to create our own types to represent
objects and arrays using different TypeScript features. We will
understand the TypeScript compiler and its key options in a React
app. Finally, we will revise the alert component we built in the last

chapter to use TypeScript.
In this chapter, we'll cover the following topics:
« Understanding the benefits of TypeScript
« Understanding JavaScript types
« Using basic TypeScript types
 Creating TypeScript types
o Using the TypeScript compiler

 Creating a React and TypeScript component

By the end of this chapter, you'll be able to create simple type-safe

React components.

Technical requirements

We will use the following software in this chapter:

Browser: A modern browser such as Google Chrome.

TypeScript Playground: This is a website at
https://www.typescriptlang.org/play/ that allows you to play around

with and understand the features of TypeScript without installing it.

Terminal: We will use a terminal to execute commands to create a
TypeScript project. The default terminal available in your operating

system will work fine.

Visual Studio Code: We'll need a code editor to explore TypeScript. If
you didn' install it in the last chapter, it can be installed from

https://code.visualstudio.com/.

Node.js and npm: TypeScript is dependent on these pieces of software.

You can install them from https://nodejs.org/en/download/.

All the code snippets in this chapter can be found online at

https://github.com/PacktPublishing/Learn-React-with-TypeScript-

Third-Edition/tree/main/Chapter02.

Understanding the benefits of
TypeScript

In this section, we will start by understanding what TypeScript is,

how it relates to JavaScript, and how TypeScript enables teams to be

https://www.typescriptlang.org/play/
https://code.visualstudio.com/
https://nodejs.org/en/download/
https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/tree/main/Chapter02

more productive.

Understanding TypeScript

TypeScript was first released in 2012 and is still being developed,
with new releases coming out every few months. But what is

TypeScript, and what are its benefits?

TypeScript is often referred to as a superset or extension of
JavaScript because any feature in JavaScript is available in
TypeScript. Unlike JavaScript, TypeScript can't be executed directly

in a browser - it must be transpiled into JavaScript first.

NOTE

It is worth being aware that a proposal is being considered that would allow
TypeScript to be executed directly in a browser without transpilation. See the

following link for more information: https://github.com/tc39/proposal-type-

annotations.

TypeScript adds a rich type system to JavaScript. It is often used
with frontend frameworks such as Angular, Vue, and React.
TypeScript can also be used to build a backend with Node.js, or
even newer server runtimes such as Bun or Deno. This

demonstrates how flexible TypeScript’s type system is.

https://github.com/tc39/proposal-type-annotations

When a JavaScript code base grows, it can become hard to read and
maintain. TypeScript’s type system solves this problem. TypeScript
uses the type system to allow code editors to catch type errors as
developers write problematic code. Code editors also use the type
system to provide productivity features, such as robust code

navigation and code refactoring.

Next, we will step through an example of how TypeScript catches a

type of error that JavaScript cant.

Catching type errors early

The type information helps the TypeScript compiler catch type
errors. In code editors such as Visual Studio Code, a type error is
underlined in red immediately after the developer has made a type
mistake. Carry out the following steps to experience an example of

TypeScript catching a type error:
1. Open Visual Studio Code in a folder of your choice.

2. Create a new file called calculateTotalPrice. js by choosing

the New File option in the Explorer panel.

EXPLORER

\ OPEN EDITORS
' CHAPTER2 GIEE O &

calculateTotaIPrice‘jsl

Figure 2.1 — Creating a new file in Visual Studio Code

3. Enter the following code into the file:

function calculateTotalPricedsS (
product,
quantity,
discount,
)|
const priceWithoutDiscount =
product.price * quantity;
const discountAmount =
priceWithoutDiscount * discount;
return (
priceWithoutDiscount -
discountAmount
) i
}

The function calculates the total price for a product, as well as

the quantity and discount passed into it.

Remember that the code snippets are available online to copy.
The link to the previous snippet is
https://github.com/PacktPublishing/Learn-React-with-

TypeScript-Third-Edition/blob/main/Chapter02/understanding-

typescript/calculateTotalPrice.js.

There is a bug in the code that might be difficult to spot, and the
error won't be highlighted by Visual Studio Code. The bug will

https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/blob/main/Chapter02/understanding-typescript/calculateTotalPrice.js

become clear in step 5 after the code has been converted to

TypeScript.

4. Now, create a copy of the file but with a . ts extension instead of . js.
A file can be copied by right-clicking on it in the Explorer panel and
selecting the Copy option. Then, right-click the Explorer panel again

and select the Paste option to create the copied file.

NOTE

A . ts file extension denotes a TypeScript file. This means a TypeScript

compiler will perform type checking on this file.

5.In the calculateTotalPrice. ts file, remove the IS at the end
of the function name and make the following highlighted updates to
the code:

function calculateTotalPrice(

product: { name: string; unitPrice: number
},

quantity: number,

discount: number
) |

const priceWithoutDiscount = product.price *
quantity;

const discountAmount = priceWithoutDiscount
* discount;

return priceWithoutDiscount -
discountAmount;

}

Here, we have added TypeScript type annotations to the
function parameters. We will learn about type annotations in

detail in the next section.

The key point is that the type error is now highlighted by a red
squiggly underline:

TS calculateTotalPrice.ts > @ calculateTotalPrice > [#] priceWithoutDiscount
1 function calculateTotalPrice(

2 product: { name: string; unitPrice: number },

3 quantity: number,

4 discount: number

5) d

6 const priceWithoutDiscount = product.m * quantity;

1 const disc Property 'price' does not exist on type '{ name: string;
g return pri ,nitprice: number; }'. ts(2339)

by
11 Property price does not exist on type
12 { name: string; unitPrice: number } .
13
14 any
15 View Problem (XF8) Quick Fix... (38.)
16

Figure 2.2 — Highlighted type error

The bug is that the function references a price property in the
product object that doesn’t exist. The property that should be

referenced is unitPrice.

Catching these problems early in the development process
increases the team’s throughput and is one less thing for quality
assurance to catch. It could be worse - the bug could have gotten

into the live app and given users a bad experience.

Keep these files open in Visual Studio Code because we will run
through an example of TypeScript improving the developer

experience next.

Improving developer experience and
productivity with IntelliSense

IntelliSense is a feature in code editors that gives useful
information about elements of code and allows code to be quickly
completed. For example, IntelliSense can provide the list of

properties available in an object.

Carry out the following steps to experience how TypeScript works
better with IntelliSense than JavaScript and how this positively
impacts productivity. As part of this exercise, we will fix the price

bug from the previous section:

1. Open calculateTotalPrice.js, and on line 2, where
product.price is referenced, remove price. Then, with the
cursor after the dot (.), click Ctrl + spacebar. This opens Visual Studio

Code’s IntelliSense:

s calculateTotalPrice.js > @ calculateTotalPriceJS > [] priceWithoutDiscount
function calculateTotalPricelS(product, quantity, discount) {
const priceWithoutDiscount = product.]i quantity;

const discountAmolEl R YRIIEN LA g k-0

1

2

3

4 return priceWithotabc discount

5 I abc discountAmount

6 abc priceWithoutDiscount
abc product
abc quantity

Figure 2.3 — IntelliSense in a JavaScript file

Visual Studio Code can only guess the potential property name, so
it lists variable names and function names it has seen in the file.
Unfortunately, IntelliSense doesn't help in this case because the

correct property name, unitPrice, is not listed.

2. Now, open calculateTotalPrice. ts, remove price from
product.price, and press Ctrl + spacebar to open IntelliSense

again:

TS calculateTotalPrice.ts > @ calculateTotalPrice > [€] priceWithoutDiscount
1 function calculateTotalPrice(

2 product: { name: string; unitPrice: number },

3 quantity: number,

4 discount: number

5)

6 const priceWithoutDiscount = product. * quantity;
7

8

9

const discountAmoUSSRELE (property) name: string

return priceWithoit& unitPrice
}

Figure 2.4 — IntelliSense in a TypeScript file
This time, Visual Studio Code lists the correct properties.

3. Select unitPrice from IntelliSense to resolve the type error.

IntelliSense is just one tool that TypeScript provides. It can also
provide robust refactoring features, such as renaming React
components, and helps with accurate code navigation, such as

going to a function definition.
To recap, we learned the following in this section:

« TypeScripts type-checking feature helps catch problems earlier in the

development process

« TypeScript enables code editors to offer productivity features such as

IntelliSense
« These advantages provide significant benefits when working in larger

code bases

Next, we will learn about the type system in JavaScript. This will

further underline the need for TypeScript in a large code base.

Understanding JavaScript types

Before understanding the type system in TypeScript, let’s briefly
explore the type system in JavaScript. To do this, open a browser

and carry out the following steps:

1. Open the browser development tools (F12 on Windows or Cmd +

Option + I on Mac) and go to the Console panel.

2. Enter the following lines into the console:

let firstName = “Fred”;
console.log(typeof firstName) ;
let score = 9;

console.log(typeof score) ;

let date = new Date (2022, 10, 1);
console.log(typeof date) ;

The code assigns three variables to various values. The code also
outputs the variable values to the console, along with their

JavaScript type.

Here’s the console output:

> let firstName = "Fred";
¢
> console. log(typeof firstName)
string VM678:1

let score = 9;

LA T VR

console. log(typeof score);
number VM865:1

let date = new Date(2022, 10, 1);

VA A

console. log(typeof date);
object vMo04:1

Figure 2.5 — Some JavasScript types

It isn't surprising that firstName is a string and score isa

number. However, it is a little surprising that date is an object

rather than something more specific, such as a date.

3. Lets add another couple of lines of code to the console:

score = “ten”;
console.log(typeof score) ;

Again, the console output is a little surprising:

> score = "ten"
< 'ten'
> console. log(typeof score)
string VM1275:1

Figure 2.6 — Variable changing type

The score variable has changed from a number type to a string

type! This is because JavaScript is loosely typed.

A key point is that JavaScript only has a minimal set of types, such
as string, number, and boolean. It is worth noting that all of the
JavaScript types are available in TypeScript because Typescript is a

superset of JavaScript.

Also, JavaScript allows a variable to change its type - meaning that
the JavaScript engine won't throw an error if a variable is changed to
a completely different type. This loose typing makes it impossible

for code editors to catch type errors.

NOTE

For more information on JavaScript types, see

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Data_structures.

Now that we understand the limitations of the type system in
JavaScript, we will learn about TypeScript’s type system, starting

with basic types.

Using basic TypeScript types

In this section, we'll start by understanding how TypeScript types
can be declared and how they are inferred from assigned values. We
will then learn the basic types commonly used in TypeScript that

aren’t available in JavaScript and understand helpful use cases.

Using type annotations

TypeScript type annotations enable variables to be declared with
specific types. These allow the TypeScript compiler to check that
the code adheres to these types. In short, type annotations allow
TypeScript to catch bugs where our code uses the wrong type much

earlier than we would if we were writing our code in JavaScript.

Open TypeScript Playground at
https://www.typescriptlang.org/play and carry out the following

steps to explore type annotations:

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Data_structures
https://www.typescriptlang.org/play

1. Remove any existing code in the left-hand pane and enter the following

variable declaration:

let unitPrice: number;

The type annotation comes after the variable declaration. It
starts with a colon followed by the type we want to assign to the
variable. In this case, unitPrice is going to be a number type.
Remember that number is a type in JavaScript, which means

that it is available for us to use in TypeScript too.

The transpiled JavaScript appears on the right-hand pane as

follows:
let unitPrice;

However, notice that the type annotation has disappeared. This

is because type annotations don't exist in JavaScript.

NOTE

You may also see “use strict”; atthetop of the transpiled JavaScript.
This means that the JavaScript will be executed in JavaScript strict mode,
which will pick up more coding mistakes. For more information on JavaScript
strict mode, see https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Strict_mode.

2. Add a second line to the program:

unitPrice = “Table”;

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Strict_mode

Notice that a red line appears under unitPrice on this line. If

you hover over th